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a b s t r a c t

A face-based smoothed finite element method (FS-FEM) using tetrahedral elements was recently pro-
posed to improve the accuracy and convergence rate of the existing standard finite element method
(FEM) for the solid mechanics problems. In this paper, the FS-FEM is further extended to more compli-
cated visco-elastoplastic analyses of 3D solids using the von-Mises yield function and the Prandtl–Reuss
flow rule. The material behavior includes perfect visco-elastoplasticity and visco-elastoplasticity with
isotropic hardening and linear kinematic hardening. The formulation shows that the bandwidth of stiff-
ness matrix of FS-FEM is larger than that of FEM, and hence the computational cost of FS-FEM in numer-
ical examples is larger than that of FEM for the same mesh. However, when the efficiency of computation
(computation time for the same accuracy) in terms of a posteriori error estimation is considered, the FS-
FEM is more efficient than the FEM.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recently years, significant development has been made in
meshfree methods in term of theory, formulism and application
[1]. Some of these meshfree techniques have been applied back
to finite element settings [2]. The strain smoothing technique has
been proposed by Chen et al. [3] to stabilize the solutions of the no-
dal integrated meshfree methods and then applied in the natural-
element method [4]. Liu et al. has generalized the gradient (strain)
smoothing technique [5] and applied it in the meshfree context
[6–13] to formulate the node-based smoothed point interpolation
method (NS-PIM or LC-PIM) [14,15] and the node-based smoothed
radial point interpolation method (NS-RPIM or LC-RPIM) [16].
Applying the same idea to the FEM, a cell-based smoothed finite
element method (SFEM or CS-FEM) [17–20], a node-based
smoothed finite element method (NS-FEM) [21] and an edge-based
smoothed finite element method (ES-FEM) in two-dimensional
(2D) problems [22] have also been formulated.
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In the CS-FEM, the domain discretization is still based on quad-
rilateral elements as in the FEM, however the stiffness matrices are
calculated based over smoothing cells (SC) located inside the quad-
rilateral elements as shown in Fig. 1. When the number of SC of the
elements equals 1, the CS-FEM solution has the same properties
with those of FEM using reduced integration. The CS-FEM in this
case can be unstable and can have spurious zeros energy modes,
depending on the setting of the problem. A stabilization technique
to alleviate this instability can be found in ref [27] which can be ex-
tended for 3D finite elements and for plasticity problems. When SC
approaches infinity, the CS-FEM solution approaches to the solu-
tion of the standard displacement compatible FEM model [18]. In
practical calculation, using four smoothing cells for each quadrilat-
eral element in the CS-FEM is easy to implement, work well in gen-
eral and hence advised for all problems. The numerical solution of
CS-FEM (SC = 4) is always stable, accurate, much better than that of
FEM, and often very close to the exact solutions. The CS-FEM has
been extended for general n-sided polygonal elements (nSFEM or
nCS-FEM) [28], dynamic analyses [29], incompressible materials
using selective integration [30,31], plate and shell analyses
[32–36], and further extended for the extended finite element
method (XFEM) to solve fracture mechanics problems in 2D
continuum and plates [37].

In the NS-FEM, the domain discretization is also based on ele-
ments as in the FEM, however the stiffness matrices are calculated
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Fig. 1. Division of quadrilateral element into the smoothing cells (SCs) in CS-FEM by connecting the mid-segment-points of opposite segments of smoothing cells. (a) 1 SC; (b)
2 SCs; (c) 3 SCs; (d) 4 SCs; (e) 8 SCs; and (f) 16 SCs.
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based on smoothing domains associated with nodes. The NS-FEM
works well for triangular elements, and can be applied easily to
general n-sided polygonal elements [21] for 2D problems and tet-
rahedral elements for 3D problems. For n-sided polygonal ele-
ments [21], smoothing domain XðkÞ associated with the node k is
created by connecting sequentially the mid-edge-point to the cen-
tral points of the surrounding n-sided polygonal elements of the
node k as shown in Fig. 2. Note that n-sided polygonal elements
were also formulated in standard FEM settings [38–41]. When only
linear triangular or tetrahedral elements are used, the NS-FEM pro-
duces the same results as the method proposed by Dohrmann et al.
[42] or to the NS-PIM (or LC-PIM) [14] using linear interpolation.
The NS-FEM [21] has been found immune naturally from volumet-
ric locking and possesses the upper bound property in strain en-
ergy as presented in [43]. Hence, by combining the NS-FEM and
FEM with a scale factor a 2 ½0;1�, a new method named as the al-
node k

cell
(k)

(k)Γ

: central point of n-sided polygonal element : field node : mid-edge point

Fig. 2. n-Sided polygonal elements and the smoothing cell (shaded area) associated
with nodes in NS-FEM.
pha Finite Element Method (aFEM) [44] is proposed to obtain
nearly exact solutions in strain energy using triangular and tetra-
hedral elements. The aFEM [44] is therefore also a good candidate
among the methods having super convergence and high efficiency
in non-linear problems [45–47]. The NS-FEM has been developed
for adaptive analysis [48]. One disadvantage of NS-FEM is its larger
bandwidth of stiffness matrix compared to that of FEM, because
the number of nodes related to the smoothing domains associated
with nodes is larger than that related to the elements. The compu-
tational cost of NS-FEM therefore is larger than that of FEM for the
same meshes used. In terms of computational efficiency (CPU time
needed for the same accuracy results measured in energy norm),
however, the NS-FEM-T3 can be much better than the FEM-T3
(see, Chapter 8 in [1]).

In the ES-FEM [22], the problem domain is also discretized
using triangular elements as in the FEM, however the stiffness
matrices are calculated based on smoothing domains associated
with the edges of the triangles. For triangular elements, the
smoothing domain XðkÞ associated with the edge k is created by
connecting two endpoints of the edge to the centroids of the adja-
cent elements as shown in Fig. 3. The numerical results of ES-FEM
using examples of static, free and forced vibration analyses of sol-
ids [22] demonstrated the following excellent properties: (1) the
ES-FEM is often found super-convergent and much more accurate
than the FEM using triangular elements (FEM-T3) and even more
accurate than the FEM using quadrilateral elements (FEM-Q4) with
the same sets of nodes; (2) there are no spurious non-zeros energy
modes and hence the ES-FEM is both spatial and temporal stable
and works well for vibration analysis; (3) no additional degree of
freedom and no penalty parameter is used; (4) a novel domain-
based selective scheme is proposed leading to a combined ES/NS-
FEM model that is immune from volumetric locking and hence
works very well for nearly incompressible materials. Note that
similar to the NS-FEM, the bandwidth of stiffness matrix in the
ES-FEM is larger than that in the FEM-T3, hence the computational
cost of ES-FEM is larger than that of FEM-T3. However, when the
efficiency of computation (computation time for the same accu-
racy) in terms of both energy and displacement error norms is con-
sidered, the ES-FEM is more efficient [22]. The ES-FEM has been
developed for 2D piezoelectric [23], 2D visco-elastoplastic [24],
plate [25] and primal-dual shakedown analyses [26].
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Further more, the idea of ES-FEM has been extended for the 3D
problems using tetrahedral elements to give a so-called the face-
based smoothed finite element method (FS-FEM) [49]. In the
FS-FEM, the domain discretization is still based on tetrahedral
elements as in the FEM, however the stiffness matrices are calcu-
lated based on smoothing domains associated with the faces of
the tetrahedral elements as shown in Fig. 4. The FS-FEM is found
significantly more accurate than the FEM using tetrahedral ele-
ments for both linear and geometrically non-linear solid mechanics
problems. In addition, a novel domain-based selective scheme is
proposed leading to a combined FS/NS-FEM model that is immune
from volumetric locking and hence works well for nearly incom-
pressible materials. The implementation of the FS-FEM is straight-
forward and no penalty parameters or additional degrees of
freedom are used. Note that similar to the ES-FEM and NS-FEM,
the bandwidth of stiffness matrix in the FS-FEM is also larger than
that in the FEM, and hence the computational cost of FS-FEM is lar-
ger than that of FEM. However, when the efficiency of computation
(computation time for the same accuracy) in terms of both energy
and displacement error norms is considered, the FS-FEM is still
more efficient than the FEM [49].

In this paper, we aim to extend the FS-FEM to even more com-
plicated visco-elastoplastic analyses in 3D solids. In this work, we
combine the FS-FEM with the work of Carstensen and Klose [50]
using the standard FEM in the setting of von-Mises conditions
: central point of elements (H, I): field node
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Fig. 4. Two adjacent tetrahedral elements and the smoothing domain XðkÞ (shaded
domain) formed based on their interface k in the FS-FEM
and a Prandtl–Reuss flow rule. The material behavior includes per-
fect visco-elastoplasticity and visco-elastoplasticity with isotropic
hardening and linear kinematic hardening in a dual model with
both displacements and the stresses as the main variables. The
numerical procedure, however, eliminates the stress variables
and the problem becomes only displacement-dependent and is
easier to deal with. The formulation shows that the bandwidth of
stiffness matrix of FS-FEM is larger than that of FEM, and hence
the computational cost of FS-FEM in numerical examples is larger
than that of FEM. However, when the efficiency of computation
(computation time for the same accuracy) in terms of a posteriori
error estimation is considered, the FS-FEM is more efficient than
the FEM.

2. Dual model of visco-elastoplastic problem using the FS-FEM

2.1. Strong form and weak form [50]

The visco-elastoplastic problem which deforms in the interval
t 2 ½0; T� can be described by equilibrium equation in the domain
X bounded by C

divrþ b ¼ 0 in X ð1Þ

where b 2 ðL2ðXÞÞ3 is the body forces, r 2 ðL2ðXÞÞ3 is the stress field.
The essential and static boundary conditions, respectively, on the
Dirichlet boundary CD and the Neumann boundary CN are

u ¼ w0 on CD and rn ¼ �t on CN ð2Þ

in which u 2 ðH1ðXÞÞ3 is the displacement field; w0 2 ðH1ðXÞÞ3 is
prescribed surface displacement; �t 2 ðL2ðCNÞÞ3 is prescribed surface
force and n is the unit outward normal matrix.

In the context of small strain, the total strain eðuÞ ¼ rSu, where
rSu denotes the symmetric part of displacement gradient, is sep-
arated into two contributions

eðuÞ ¼ eðrÞ þ pðnÞ ð3Þ

where eðrÞ ¼ C�1
r is elastic strain tensor; n is internal variable and

pðnÞ is an irreversible plastic strain in which C is a fourth order ten-
sor of material constants.

To describe properly the evolution process for the plastic strain,
it is required to define the admissible stresses, a yield function, and
an associated flow rule. In this work, we use the von-Mises yield
function and the Prandtl–Reuss flow rule. Let p and n be the kine-
matic variables of the generalized strain P ¼ ðp; nÞ, and R ¼ ðr; aÞ
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be the corresponding generalized stress, where a is the hardening
parameter describing internal stresses. We define � to be the
admissible stresses set, which is a closed, convex set, containing
0, and defined by

� ¼ fR : UðRÞ 6 0g ð4Þ

where U is the von-Mises yield function which is presented specif-
ically for different visco-elastoplasticity cases as follows:

Case a: Perfect visco-elastoplasticity:
In this case, there is no hardening and the internal variables n, a

are absent. The von-Mises yield function is given simply by

UðrÞ ¼ kdevðrÞk � rY ð5Þ

where rY is the yield stress; kxk is the norm of tensor x and is com-

puted by kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1

P3
j¼1x2

ij

q
, devðxÞ is the deviator tensor of ten-

sor x and defined by

devðxÞ ¼ x� trðxÞ
3

I ð6Þ

in which I is the second-order symmetric unit tensor and
trðxÞ ¼

P3
i¼1xii is the trace operator of tensor x. For the viscosity

parameter v > 0, the Prandtl–Reuss flow rule has the form

_p ¼
1
v ðkdevðrÞk � rYÞ if kdevðrÞk > rY

0 if kdevðrÞk 6 rY

(
ð7Þ

Case b: Visco-elastoplasticity with isotropic hardening:
In the case of the isotropic hardening, the problem is character-

ized by a modulus of hardening H P 0, and a � aI P 0 (I means
Isotropic) becomes a scalar hardening parameter and relates to
the scalar internal strain variable n by

aI ¼ �H1n ð8Þ

where H1 is a positive hardening parameter.
The von-Mises yield function is given by

Uðr;aIÞ ¼ kdevðrÞk � rYð1þ HaIÞ ð9Þ

For the viscosity parameter v > 0, the Prandtl–Reuss flow rule has
the form

_p
_n

� �
¼

1
v

1
1þH2r2

Yð Þ
kdevðrÞk�ð1þaIHÞrY

�HrY ðkdevðrÞk�ð1þaIHÞrY Þ

� �
if kdevðrÞk> ð1þaIHÞrY

0
0

� �
if kdevðrÞk6 ð1þaIHÞrY

8>>><>>>: ð10Þ

Case c: Visco-elastoplasticity with linear kinematic hardening:
In the case of the linear kinematic hardening, the internal stress

a � aK (K means Kinematic) relates to the internal strain n by

aK ¼ �k1n ð11Þ

where k1 is a positive parameter.
The von-Mises yield function is given by

Uðr; aKÞ ¼ kdevðrÞ � devðaKÞk � rY ð12Þ

For the viscosity parameter v > 0, the Prandtl–Reuss flow rule has
the form

_p
_n

� �
¼

1
2v
kdevðr� aKÞk � rY

�ðkdevðr� aKÞk � rYÞ

� �
if kdevðr� aKÞk > rY

0
0

� �
if kdevðr� aKÞk 6 rY

8>>><>>>:
ð13Þ

In general, the Prandtl–Reuss flow rule, with the viscosity parame-
ter v > 0, has the form [50]
_p
_n

� �
¼ 1

v
r�Pr

a�Pa

� �
ð14Þ

where Pr and Pa are defined as the projections of ðr; aÞ into the
admissible stresses set � .

The visco-elastoplastic problem can now be stated generally in
a weak formulation with the above-mentioned flow rules as fol-
lows: seek u 2 ðH1ðXÞÞ3 such that u = w0 on CD and for
8v 2 ðH1

0ðXÞÞ
3 ¼ fv 2 ðH1ðXÞÞ3 : v ¼ 0 on CDg, the following equa-

tions are satisfied:Z
X

rðuÞ : eðvÞdX ¼
Z

X
b � v dXþ

Z
CN

�t � v dC ð15Þ

_p
_n

� �
¼ eð _uÞ � C�1 _r

nð _aÞ

" #
¼ 1

v
r�Pr

a�Pa

� �
ð16Þ

where A : B ¼
P

j;kAjkBjk denotes the scalar products of (symmetric)
matrices.

2.2. Time-discretization scheme [50]

A generalized midpoint rule is used as the time-discretization
scheme. In each time step, a spatial problem needs to be solved
with given variables ðuðtÞ; rðtÞ; aðtÞÞ at time t0 denoted as
ðu0; r0; a0Þ and unknowns at time t1 ¼ t0 þ Dt denoted as
ðu1; r1; a1Þ. Time derivatives are replaced by backward difference
quotients; for instance _u is replaced by u#�u0

#Dt where
u# ¼ ð1� #Þu0 þ #u1 with 1=2 6 # 6 1. The time discrete problem
now becomes: seek u# 2 ðH1ðXÞÞ3 that satisfied u# ¼ w0 on CD andZ

X
rðu#Þ : eðvÞdX ¼

Z
X

b# � vdXþ
Z

CN

�t# � vdC;8v 2 H1
0ðXÞ

� �3 ð17Þ

1
#Dt

eðu# � u0Þ � C�1ðr# � r0Þ
nða; t#Þ � nða; t0Þ

" #
¼ 1

v
r# �Pr#

a# �Pa#

� �
ð18Þ

where b# ¼ ð1� #Þb0 þ #b1;�t# ¼ ð1� #Þ�t0 þ #�t1 in which b0;�t0;b1

and �t1 are body forces and surface forces at time t0; t1, respectively.
Eqs. (17) and (18) is in fact a dual model that has both stress and

displacement as field variables. To solve the set of Eqs. (17) and
(18) efficiently, we need to eliminate one variable. This can be done
by first expressing explicitly the stress r# in the form of displace-
ment u# using Eq. (18), and then substituting it into Eq. (17). The
problem will then becomes only displacement-dependent, and
we need to solve the resultant form of Eq. (17).

2.3. Analytic expression of the stress tensor

Explicit expressions for the stress tensor r# in different cases of
visco-elastoplasticity can be presented briefly as follows [50]

(a) Perfect visco-elastoplasticity:
In the elastic phase

r# ¼ C1 trð#DtAÞIþ 2l devð#DtAÞ ð19Þ
where A ¼ eðu#�u0Þ

#Dt þ C�1 r0
#Dt :

In the plastic phase, the plastic occurs when kdevð#DtAÞk > brY and

r# ¼ C1trð#DtAÞIþ ðC2 þ C3=kdevð#DtAÞkÞdevð#DtAÞ ð20Þ
where
C1 ¼ kþ 2l=3; C2 ¼ v=ðbv þ #DtÞ; C3 ¼ #DtrY=ðbv þ #DtÞ

ð21Þ
in which b ¼ 1=ð2lÞ.

(b) Visco-elastoplasticity with isotropic hardening:
In the elastic phase

r# ¼ C1 trð#DtAÞIþ 2l devð#DtAÞ ð22Þ

In the plastic phase, the plastic occurs when kdevð#DtAÞk >
bð1þ aI

0HÞrY and
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r# ¼ C1 trð#DtAÞIþ ðC3=ðC2kdevð#DtAÞkÞ þ C4=C2Þdevð#DtAÞ ð23Þ
where

C1 ¼ kþ 2l=3;C2 ¼ bvð1þ H2r2
Y Þ þ #Dtð1þ bH1H2r2

YÞ
C3 ¼ #DtrY ð1þ aI

0HÞ;C4 ¼ H1H2#Dtr2
Y þ vð1þ H2r2

Y Þ ð24Þ

in which aI
0 is the initial scalar hardening parameter.

(c) Visco-elastoplasticity with linear kinematic hardening:
In the elastic phase

r# ¼ C1 trð#DtAÞIþ 2l devð#DtAÞ ð25Þ
In the plastic phase, the plastic occurs when kdevð#DtA�
baK

0 Þk > brY and

r# ¼ C1 tr #DtAð ÞIþ C2 þ C3=kdev #DtA� baK
0

� �
k

� �
dev #DtA� baK

0

� �
þ dev aK

0

� �
ð26Þ
Fig. 5. Flow chart to solve the visco-elastopla
where

C1 ¼ kþ 2l=3; C2 ¼
#Dtk1 þ 2v

#Dt þ b#Dtk1 þ v=l ;

C3 ¼
#DtrY

#Dt þ b#Dtk1 þ v=l ð27Þ

in which rk
0 is the initial internal stress.

Now, by replacing the stress r# described explicitly into Eq. (17),
we obtain the only displacement-dependent problem and can ap-
ply different numerical methods to solve.

2.4. Discretization in space using FEM

The domain X is now discretized into Ne elements and Nn nodes
such that X ¼

SNe
e¼1Xe and Xi \Xj ¼ ;; i – j. In the discrete version

of (17), the spaces V ¼ ðH1ðXÞÞ3 and V0 ¼ ðH1
0ðXÞÞ

3 are replaced
stic problems using the FS-FEM: part 1.
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by finite dimensional subspaces Vh � V and Vh
0 � V0. The discrete

problem now becomes: seek u# 2 Vh such that u# ¼ w0 on CD andZ
X

r#ðeðu# � u0Þ þ C�1
r0Þ : eðvÞdX

¼
Z

X
b# � v dXþ

Z
CN

�t# � v dC for 8v 2 Vh
0 ð28Þ

Let ðu1; . . . ;u3Nn
Þ be the nodal basis of the finite dimensional space

Vh, where ui is the independent scalar hat shape function on node
satisfying condition Kronecker uiðiÞ ¼ 1 and uiðjÞ ¼ 0; i–j, then the
discrete problem Eq. (28) now becomes: seeking u# 2 Vh such that
u# ¼ w0 on CD and

Fi ¼
Z

X
r#ðeðu# � u0Þ þ C�1

r0Þ

: eðuiÞdX�
Z

X
b# �ui dX�

Z
CN

�t# �ui dC ¼ 0 ð29Þ
Fig. 6. Flow chart to solve the visco-elastopla
for i ¼ 1; . . . ;3Nn. Fi in Eq. (29) can be written in the sum of a part Q i

which depends on u# and a part Pi which is independent of u# such
as

Fiðu#Þ ¼ Q iðu#Þ � Pi ð30Þ

with

Q iðu#Þ ¼ Q i ¼
Z

X
r# eðu# � u0Þ þ C�1

r0

	 

: eðuiÞdX ð31Þ

Pi ¼
Z

X
b# �uidXþ

Z
CN

�t# �ui dC ð32Þ
2.5. Iterative solution

In order to solve Eq. (29) in this work, Newton–Raphson method
is used [50]. In each step of the Newton iterations, the discrete
stic problems using the FS-FEM: part 2.
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displacement vector up
# expressed in the nodal basis by

up
# ¼

P3Nn
i¼1 uiui is determined from iterative solution

DFðup
#Þu

pþ1
# ¼ DFðup

#Þu
p
# � Fðup

#Þ ð33Þ

where DF is in fact the system stiffness matrix whose the local en-
tries are defined as

DF up
#;1; . . . ; up

#;3Nn

	 
	 

rs
¼ @Fr up

#;1; . . . ; up
#;3Nn

	 

=@up

#;s ð34Þ

where r; s 2 Wdf which is the set containing degrees of freedom of
all of nodes.

To properly apply the Dirichlet boundary conditions for our
nonlinear problem, we use the approach of Lagrange multipliers.
Combining the Newton iteration (33) and the set of boundary con-
ditions imposed through Lagrange multipliers k, the extended sys-
tem of equations is obtained

DFðup
#Þ GT

G 0

 !
upþ1
#

k

 !
¼

f
w0

� �
ð35Þ

with f ¼ DFðup
#Þu

p
# � Fðup

#Þ and G is a matrix created from Dirichlet
boundary conditions such that Gupþ1

# ¼ w0.
The extended system of Eq. (35) can now be solved for upþ1

# and
k at each time step. The solving process is iterated until the relative
residual Fðupþ1

#;z1
; . . . ;upþ1

#;zm
Þ of m free nodes ðz1; . . . ; zmÞ 2 N, where N
Fig. 8. A domain discretization using 2007 nodes and 8998 tetrahedral elements for
the thick plate with a cylindrical hole subjected to time dependent surface forces
gðtÞ.
is the set of free nodes, is smaller than a given tolerance or the
maximum number of iterations is larger than a prescribed number.

2.6. Discretization in space using the FS-FEM

In the FS-FEM, the domain discretization is still based on the
tetrahedral elements as in the standard FEM, but the basic stiffness
matrix in the weak form (29) is performed based on the ‘‘smooth-
ing domains” associated with the faces, and strain smoothing tech-
nique [3] is used. In such an integration process, the closed
problem domain X is divided into NSC ¼ Nf smoothing domains
associated with faces such that X ¼

PNf

k¼1X
ðkÞ and

XðiÞ \XðjÞ ¼ ;; i – j, in which Nf is the total number of faces located
in the entire problem domain. For tetrahedral elements, the
smoothing domain XðkÞ associated with the face k is created by
connecting three endpoints of the face to centroids of adjacent ele-
ments as shown in Fig. 4.

Using the face-based smoothing domains, smoothed strains ~ek

can now be obtained using the compatible strains e ¼ rsu# through
the following smoothing operation over domain XðkÞ associated
with face k

~ek ¼
Z

XðkÞ
eðxÞUkðxÞdX ¼

Z
XðkÞ
rsu#ðxÞUkðxÞdX ð36Þ

where UkðxÞ is a given smoothing function that satisfies at least
unity propertyZ

XðkÞ
UkðxÞdX ¼ 1 ð37Þ
Table 1
Number of iterations and the estimated error using FEM and FS-FEM at various time
steps for the thick plate with cylindrical hole.

Step FEM FS-FEM

Iterations gh ¼ kRrh�rhkL2
krhkL2

Iterations gh ¼ kRrh�rhkL2
krhkL2

1 1 0.1276 1 0.0877
2 1 0.1276 1 0.0877
3 1 0.1276 1 0.0877
4 1 0.1276 1 0.0877
5 1 0.1276 1 0.0877
6 1 0.1276 1 0.0877
7 1 0.1276 1 0.0877
8 4 0.1272 3 0.0874
9 4 0.1271 4 0.0870
10 4 0.1280 4 0.0872
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In the FS-FEM [49], we use the simplest local constant smoothing
function

UkðxÞ ¼
1=V ðkÞ x 2 XðkÞ

0 x R XðkÞ

(
ð38Þ

where V ðkÞ is the volume of the smoothing domain XðkÞ and is calcu-
lated by

V ðkÞ ¼
Z

XðkÞ
dX ¼ 1

4

XNðkÞe

j¼1

V ðjÞe ð39Þ

where NðkÞe is the number of elements attached to the face kðNðkÞe ¼ 1
for the boundary faces and NðkÞe ¼ 2 for inner faces) and V ðjÞe is the
volume of the jth element around the face k.

In the FS-FEM, the trial function used for each tetrahedral ele-
ment is similar as in the standard FEM with

up
# ¼

X3Nn

i¼1

uiui ð40Þ

Substituting Eqs. (40) and (38) into (36), the smoothed strain on the
domain XðkÞ associated with face k can be written in the following
matrix form of nodal displacements
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Fig. 9. Comparison of the computational cost and efficiency between FEM and FS-FE
Computational cost; and (b) computational efficiency.

Fig. 10. Elastic shear energy density kdevðRrhÞk2
=ð4lÞ (the grey stone) of the plate with

elements).
~ek ¼
X

I2WðkÞ
df

eBIðxkÞuI ð41Þ

where WðkÞdf is the set containing degrees of freedom of elements
attached to the face k (for example for the inner face k as shown
in Fig. 4, WðkÞdf is the set containing degrees of freedom of nodes
fA;B;C;D; Eg and the total number of degrees of freedom
NðkÞdf ¼ 15Þ and eBIðxkÞ, that is termed as the smoothed strain matrix
on the domain XðkÞ, is calculated numerically by an assembly pro-
cess similarly as in the FEM

eBIðxkÞ ¼
1

V ðkÞ
XNðkÞe

j¼1

1
4

V ðjÞe Bj ð42Þ
where Bj ¼
P

I2Se
j
BIðxÞ is the gradient matrix of shape functions of

the jth element attached to the face k. It is assembled from the gra-
dient matrices of shape functions BIðxÞ (in the standard FEM) of
nodes in the set Se

j which contains four nodes of the jth tetrahedral
element. Matrix BIðxÞ for the node I in tetrahedral elements has the
form of
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Fig. 11. Evolution of the elastic shear energy density kdevðRrhÞk2
=ð4lÞ using FS-FEM at different time steps for the thick plate with cylindrical hole.
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Fig. 12. Displacements at points A and B versus the number of degrees of freedom of the thick plate with cylindrical hole; (a) x-displacement of node A, (b) y-displacement of
node B.
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BI ¼

uI;x 0 0
0 uI;y 0
0 0 uI;z

uI;y uI;x 0
0 uI;z uI;y

uI;z 0 uI;x

2666666664

3777777775
ð43Þ

Due to the use of the tetrahedral elements with the linear shape
functions, the entries of matrix Bj are constants, and so are the en-
tries of matrix eBIðxkÞ. Note that with this formulation, only the vol-
ume and the usual gradient matrices of shape functions Bj of
tetrahedral elements are needed to calculate the system stiffness
matrix for the FS-FEM. One disadvantage of FS-FEM is that the
bandwidth of stiffness matrix is larger than that of FEM, because
the number of nodes related to the smoothing domains associated
with inner faces is 5, which is 1 larger than that related to the ele-
ments. This is shown clearly by the set WðkÞdf ¼ fA;B;C;D; Eg of the in-
ner face k as shown in Fig. 4. The computational cost of FS-FEM
therefore is larger than that of FEM for the same meshes.

In the discrete version of the visco-elastoplastic problems using
the FS-FEM with the smoothed strain (36) used for smoothing
domains associated with faces, the discrete problem Eq. (29) now
becomes: seeking u# 2 Vh such that u# ¼ w0 on CD and
Fig. 14. (a) 3D square block with a cubic hole subjected to the surface traction q; (b) 3D L-
length of long edge is 2a, of the short edge is a, of thickness is a=2 and symmetric cond
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Fig. 13. Convergence of the elastic strain energy E ¼
R

X r# : e#dX versus the number
of degrees of freedom at t ¼ 1 of the thick plate with cylindrical hole.
Fi ¼
Z

X
r#ð~eðu# � u0Þ þ C�1

r0Þ

: ~eðuiÞdX�
Z

X
b# �ui dX�

Z
CN

�t# �ui dC ¼ 0 ð44Þ

for i ¼ 1; . . . ;3Nn, and the local stiffness matrix DFðkÞrs in Eq. (34)
associated with smoothing domain XðkÞ can be expressed as follows

DFðkÞrs ¼
@FðkÞr

@up
#;s

¼ @Q ðkÞr

@up
#;s

¼ @

@up
#;s

Z
XðkÞ

r# ~ek

X
l2WðkÞ

df

up
#;lul � u0

0B@
1CAþ C�1

r0

0B@
1CA : ~ekðurÞdX

0B@
1CA

ð45Þ

where r; s 2 WðkÞdf , and

Q ðkÞr ¼
Z

XðkÞ
r#ð~ekðu# � u0Þ þ C�1

r0Þ : ~ekðurÞdX ð46Þ

The expression r#ð~ekðu# � u0Þ þ C�1
r0Þ in Eqs. (45) and (46) now is

replaced by r# written explicitly in Eqs. 19, 20, 22, 23, 25, 26 for dif-
ferent cases of visco-elastoplasticity with just replacing e by ~ek in
corresponding positions which give the following results

(a) Perfect visco-elastoplasticity

Q ðkÞr ¼ V ðkÞðC1trð~vkÞtrð~ekðurÞÞ þ C4devð~vkÞ : ~ekðurÞÞ ð47Þ
DFðkÞrs ¼ V ðkÞðC1trð~ekðurÞÞtrð~ekðusÞÞ þ C4devð~ekðurÞÞ : ~ekðusÞ

� ðC5Þrdevð~vkÞ : ~ekðusÞÞ ð48Þ

where ~vk ¼ ~ekðu# � u0Þ þ C�1r0 and

C4 ¼
C2 þ C3=kdevð~vkÞk if kdevð~vkÞk � brY > 0

2l else

(

C5 ¼

C3=kdevð~vkÞk3½devð~ekðurÞÞ : devð~vkÞ�
NðkÞ

df
r¼1

if kdevð~vkÞk � brY > 0

0 . . . 0½ �T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
size of 1�NðkÞ

df

else

8>>>>>>>>><>>>>>>>>>:
ð49Þ

in which C1;C2; C3 is determined by Eq. (21)
shaped problem modeled from an eight of the 3D square block with a cubic hole (the
itions are imposed on the cutting boundary planes).
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(b) Visco-elastoplasticity with isotropic hardening

Q ðkÞr ¼ V ðkÞðC1trð~vkÞtrð~ekðurÞ þ C5devð~vkÞ : ~ekðurÞÞ ð50Þ
DFðkÞrs ¼ V ðkÞðC1trð~ekðurÞÞtrð~ekðusÞÞ þ C5devð~ekðurÞÞ : ~ekðusÞ

� ðC6Þrdevð~vkÞ : ~ekðusÞÞ ð51Þ
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Fig. 16. Comparison of the computational cost and efficiency between FEM and FS-FEM
and (b) computational efficiency.

Table 2
Number of iterations and the estimated error using FEM and FS-FEM at various time
steps for the 3D L-shaped problem.

Step FEM FS-FEM

Iterations gh ¼ kRrh�rhkL2
krhkL2

Iterations gh ¼ kbfRrh�rhkL2
krhkL2

1 1 0.1343 1 0.0951
2 1 0.1343 1 0.0951
3 1 0.1343 1 0.0951
4 1 0.1343 1 0.0951
5 2 0.1343 2 0.0951
6 3 0.1344 3 0.0952
7 4 0.1351 4 0.0955
8 4 0.1358 4 0.0953
9 4 0.1365 4 0.0949
10 5 0.1385 5 0.0950

Fig. 15. A domain discretization using 2327 nodes and 10584 tetrahedral elements
for the 3D L-shaped problem.
where

C5 ¼
C3=ðC2kdevð~vkÞkÞþ C4=C2 if kdevð~vkÞk� bð1þ aI

0HÞrY > 0
2l else

�

C6 ¼

C3=ðC2kdevð~vkÞk3Þ½devð~ekðurÞÞ : devð~vkÞ�
NðkÞ

df
r¼1

if kdevð~vkÞk� bð1þ aI
0HÞrY > 0

0 . . . 0½ �T|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
size of 1�NðkÞ

df

else

8>>>>>>>><>>>>>>>>:
ð52Þ

in which C1;C2;C3; C4 is determined by Eq. (24)
(c) Visco-elastoplasticity with linear kinematic hardening

Q ðkÞr ¼V ðkÞðC1trð~vkÞtrð~ekðurÞÞþC4devð~vkÞ : ~ekðurÞþcdevðaK
0 Þ : ~ekðurÞÞ

ð53Þ
DFðkÞrs ¼V ðkÞðC1trð~ekðurÞÞtrð~ekðusÞÞþC4devð~ekðurÞÞ : ~ekðusÞ

�ðC5Þrdevð~vkÞ : ~ekðusÞÞ ð54Þ

where
C4 ¼
C3=kdevð~vkÞk þ C2 if kdevð~vk � baK

0 Þk � bry > 0

2l else

(

C5 ¼

C3=kdevð~vkÞk3½devð~ekðurÞÞ : devð~vkÞ�
NðkÞ

df
r¼1

if kdevð~vk � baK
0 Þk � brY > 0

0 . . . 0½ �T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
size of 1�NðkÞ

df

else

8>>>>>>>>><>>>>>>>>>:
ð55Þ

c ¼
1 if kdevð~vk � baK

0 Þk � brY > 0

0 else

(

in which C1;C2;C3 is determined by Eq. (27)
Applying the Dirichlet boundary conditions and solving the ex-

tended system of Eq. (35) by the FS-FEM are identical to those of
the FEM.

We also note that the trial function u#ðxÞ for elements in the FS-
FEM is the same as in the standard FEM and therefore the force
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vector Pi in the FS-FEM is computed in the same way as in the FEM.
In other words, the FS-FEM changes only the stiffness matrix. Figs.
5 and 6 present the flow chart to solve the visco-elastoplastic
problems using the FS-FEM.
Fig. 18. Evolution of the elastic shear energy density kdevðRrhÞk2
=ð4lÞ

Fig. 17. Elastic shear energy density kdevðRrhÞk2
=ð4lÞ (the grey stone) of the 3D L-sha
3. A posteriori error estimator

In order to estimate the accuracy of FS-FEM compared to FEM
for the visco-elastoplastic problems, in this work we will use the
using FS-FEM at different time steps for the 3D L-shaped problem.

ped problem at t ¼ 1:0 (mesh with 2327 nodes and 10,584 tetrahedral elements).
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Fig. 19. Convergence of the elastic strain energy E ¼
R

X r# : e#dX versus the number
of degrees of freedom at t ¼ 1 of the 3D L-shaped problem.

Fig. 20. A eighth of the hollow sphere discretized by 2234 nodes and 10,385
tetrahedral elements.
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Fig. 21. Comparison of the computational cost and efficiency between FEM and FS-FEM f
and (b) computational efficiency.

Table 3
Number of iterations and the estimated error using FEM and FS-FEM at various time
steps for hollow sphere problem.

Step FEM FS-FEM

Iterations gh ¼ kRrh�rhkL2
krhkL2

Iterations gh ¼ kbfRrh�rhkL2
krhkL2

1 1 0.1067 1 0.0766
2 1 0.1067 1 0.0766
3 1 0.1067 1 0.0766
4 1 0.1067 1 0.0766
5 1 0.1067 1 0.0766
6 1 0.1067 1 0.0766
7 1 0.1067 1 0.0766
8 2 0.1067 2 0.0766
9 3 0.1067 3 0.0765
10 3 0.1067 3 0.0764
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following efficient a posteriori error [50–57] which was verified as
an error estimator in Refs. [24,50]

gh ¼
kRrh � rhkL2ðXÞ

krhkL2ðXÞ
¼

PNe

e¼1

R
Xe
ðRrh � rhÞ : ðRrh � rhÞdX

� �1=2

PNe

e¼1

R
Xe

rh : rh dX
� �1=2

ð56Þ

where Rrh is a globally continuous recovery stress field de-
rived from the discrete (discontinuous) numerical element
stress field rh. The quantity gh can monitor the local spatial
approximation error, and a larger value of gh implies a larger
spatial error.

For the FS-FEM, when computing the stresses rh for an element,
we can average the stresses of 4 smoothing domains associated
with that element and the averaged stresses are regarded as the
stresses of the element. Similarly, to calculate numerical stresses
rhðxjÞ at a node xj, we simply average the stresses of all smoothing
domains associated with the node. For the FEM, we can regard the
stresses at the controid as the element stresses rh, while the stres-
ses rhðxjÞ at a node xj are the averaged stresses of those of the ele-
ments surrounding the node.

The recovery stress field Rrh in Eq. (56) for each element in the
FS-FEM and the FEM now can be derived from the numerical stres-
ses rhðxjÞ at the node xj by using the following approximation
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Fig. 22. Elastic shear energy density kdevðRrhÞk2
=ð4lÞ for the hollow sphere problem using FEM and FS-FEM at t ¼ 1:0 (mesh with 2234 nodes and 10,385 elements).

Fig. 23. Evolution of the elastic shear energy density kdevðRrhÞk2
=ð4lÞ using FS-FEM at some different time steps for the hollow sphere problem.
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Table 4
Radial displacements at points A(1.3,0,0 ) and B(0,1.3,0) using FEM and FS-FEM at various time steps of the hollow sphere problem.

Step FEM FS-FEM

uA uB juA � uBj uA uB juA � uB j

1 0.0001664 0.0001658 6.45119E�07 0.0001682 0.0001680 1.87086E�07
2 0.0003328 0.0003315 1.29024E�06 0.0003364 0.0003364 0
3 0.0004992 0.0004973 1.93536E�06 0.0005046 0.0005040 5.61257E�07
4 0.0006656 0.0006630 2.58047E�06 0.0006728 0.0006720 7.48343E�07
5 0.0008320 0.0008288 3.22559E�06 0.0008410 0.0008400 9.35429E�07
6 0.0009984 0.0009945 3.87071E�06 0.0010092 0.0010081 1.12251E�06
7 0.0011648 0.0011603 4.51583E�06 0.0011774 0.0011761 1.3096E�06
8 0.0013312 0.0013260 5.15844E�06 0.0013456 0.0013441 1.49466E�06
9 0.0014980 0.0014922 5.80887E�06 0.0015142 0.00151251 1.6819E�06
10 0.0016667 0.0016603 6.46026E�06 0.0016850 0.00168311 1.84285E�06
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Rrh ¼
X4

j¼1

NjðxÞrhðxjÞ ð57Þ

where NjðxÞ are the linear shape functions of tetrahedral elements
used in the standard FEM, and rhðxjÞ are stress values at four nodes
of the element.
Thickness = 10

g(t)

Fig. 25. The 3D Cook’s membrane subjected to a time dependent shear force
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Fig. 24. Convergence of the elastic strain energy E ¼
R

X r# : e#dX versus the number
of degrees of freedom at t ¼ 1 of the hollow sphere problem.
In order to evaluate the integrals in Eq. (56) for tetrahedral ele-
ments, the mapping procedure using Gauss integration is per-
formed on each element with a summation on all elements. In
each element, a proper number of Gauss points depending on the
order of the recovery solution Rrh will be used.

4. Numerical examples

In this section, four numerical examples are performed to
demonstrate the properties of FS-FEM for three different visco-
elastoplastic cases: perfect visco-elastoplasticity, visco-elastoplas-
ticity with isotropic hardening and visco-elastoplasticity with
linear kinematic hardening. To emphasize the advantages of the
present method, the results of FS-FEM will be compared to those
of Carstensen and Klose [50] using the standard FEM.

4.1. A thick plate with a cylindrical hole: perfect visco-elastoplasticity

Fig. 7 represents a thick plate X with the dimensions in xOy
plane as [�2,2] � [�2,2] and the thickness in z direction as
[�0.5,0.5]. The plate has a central cylindrical hole in z-direction
with radius a ¼ 1 and is subjected to time dependent outer pres-
sures gðtÞ ¼ 100t in y-direction at two outer surfaces. Because of
its symmetry, only the upper right octant of the plate is modeled.
Symmetric conditions are imposed on cutting plane surfaces, and
the inner boundary of the hole is traction free. Fig. 8 gives a
discretization of the domain using 2007 nodes (6021 degrees of
and its discretization using 2317 nodes and 9583 tetrahedral elements.



Table 5
Number of iterations and the estimated error using FEM and FS-FEM at various time
steps for the 3D Cook’s membrane problem.

Step FEM FS-FEM

Iterations gh ¼ kRrh�rhkL2
krhkL2

Iterations gh ¼ Rrh�rhkL2
krhkL2

1 1 0.1101 1 0.0756
2 1 0.1101 1 0.0756
3 1 0.1101 1 0.0756
4 1 0.1101 1 0.0756
5 1 0.1101 1 0.0756
6 3 0.1101 3 0.0756
7 3 0.1101 3 0.0756
8 3 0.1106 4 0.0758
9 4 0.1115 4 0.0765
10 4 0.1130 4 0.0774
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freedom) and 8998 tetrahedral elements. Assuming that the mate-
rial is perfect visco-elastoplasticity with Young’s modulus
E ¼ 206;900, Poisson’s ratio v ¼ 0:29, yield stress rY ¼ 550, and
the initial data for the stress vector ro is set zero.
Fig. 27. Elastic shear energy density kdevðbfRrhÞk2
=ð4lÞ for 3D Cook’s membrane probl

elements).
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Fig. 26. Comparison of the computational cost and efficiency between FEM and FS-
Computational cost; and (b) computational efficiency.
The solution is calculated in the time interval from t ¼ 0 to
t ¼ 1:0 in 10 uniform steps Dt ¼ 0:1. Using the mesh as shown
in Fig. 8, the material remains elastic in seven first steps, between
t ¼ 0 and t ¼ 0:7 for both the FS-FEM and FEM as shown in Table 1.
Table 1 also shows that the number of iterations in Newton’s meth-
od of both FS-FEM and FEM are almost the same, but the estimated
errors gh in Eq. (56) of FS-FEM are about 30% less than those of
FEM. In addition, Fig. 9 compares the computational cost and effi-
ciency between the FEM and FS-FEM for a range of meshes at t ¼ 1.
It is seen that with the same mesh, the computational cost of FS-
FEM is larger than that of FEM as shown in Fig. 9a. However, when
the efficiency of computation (computation time for the same
accuracy) in terms of the error estimator versus computational cost
for a range of meshes is considered, the FS-FEM is more efficient
than the FEM as shown in Fig. 9b.

Fig. 10 shows the elastic shear energy density kdevðRrhÞk2
=ð4lÞ

at t ¼ 1:0 which is almost the same for FEM and FS-FEM generally.
The evolution of the elastic shear energy density kdevðRrhÞk2

=ð4lÞ
is demonstrated using the FS-FEM at four different time instances
as shown in Fig. 11 in which the plasticity domain first appears at
em using FEM and FS-FEM at t ¼ 1:0 (mesh with 2317 nodes and 9583 tetrahedral
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the corner containing point A(0,1,0.5) and then at the corner con-
taining point B(1,0,0.5).

Figs. 12 and 13 show, respectively, the convergence of displace-
ments at points A; B and the elastic strain energy E ¼

R
X r# : e#dX

versus the number of degrees of freedom at t ¼ 1 by the FEM
and FS-FEM. The solution of FS-FEM using a very fine mesh includ-
ing 17,991 degrees of freedom and 29,543 elements is used as ref-
erence solution. The results show clearly that the FS-FEM model is
softer and gives more accurate results than the FEM model using
tetrahedral elements.

4.2. A 3D L-shaped block: perfect visco-elastoplasticity

Consider the 3D square block with a cubic hole subjected to the
outer surface traction q as shown in Fig. 14a. Due to the symmetric
property of the problem, only an eighth of the domain is modeled,
which becomes a 3D L-shaped block with the length of 2a for the
long edge, a for the short edge and a=2 for the thickness as shown
Fig. 28. Evolution of the elastic shear energy density kdevðRrhÞk2
=ð4lÞ using F
in Fig. 14b. The symmetric conditions are imposed on the cutting
boundary planes. Fig. 15 gives a discretization of the domain using
2327 nodes and 10,584 tetrahedral elements. The 3D L-shaped
block is subjected to time dependent outer pressures qðtÞ ¼ 120t
in x-direction and the data of length a ¼ 1. Assuming that the
material is perfect visco-elastoplasticity with Young’s modulus
E ¼ 206;900, Poisson’s ratio v ¼ 0:29, yield stress rY ¼ 500, and
the initial data for the stress tensor r0 is set zero.

The solution is calculated in the time interval from t ¼ 0 to
t ¼ 1:0 in 10 uniform steps Dt ¼ 0:1. Using the mesh as shown in
Fig. 15, the material remains elastic in four first steps, between
t ¼ 0 and t ¼ 0:4 for both the FS-FEM and FEM as shown in Table
2. Table 2 also shows that the number of iterations in Newton’s
method of both FS-FEM and FEM are the same, but the estimated
errors gh in Eq. (56) of FS-FEM are about 30% less than those of
FEM. In addition, Fig. 16 compares the computational cost and effi-
ciency between the FEM and FS-FEM for a range of meshes at t ¼ 1.
It is seen that with the same mesh, the computational cost of
S-FEM at some different time steps for the 3D Cook’s membrane problem.
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Fig. 29. Convergence of the elastic strain energy E ¼
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FS-FEM is larger than that of FEM as shown in Fig. 16a. However,
when the efficiency of computation (computation time for the
same accuracy) in terms of the error estimator versus computa-
tional cost for a range of meshes is considered, the FS-FEM is more
efficient than the FEM as shown in Fig. 16b.

Fig. 17 shows the elastic shear energy density kdevðRrhÞk2=ð4lÞ
at t ¼ 1:0 which is also almost the same for the FEM and FS-FEM.
The evolution of the elastic shear energy density
kdevðRrhÞk2

=ð4lÞ is demonstrated using the FS-FEM at four differ-
ent time instances as shown in Fig. 18 in which the plastic domain
first appears at the re-entrant corner.

Fig. 19 shows the convergence of the elastic strain energy
E ¼

R
X r# : e#dX versus the number of degrees of freedom using

the FEM and FS-FEM at t ¼ 1:0. The solution of FS-FEM using a very
fine mesh including 15,390 degrees of freedom and 24,777 ele-
ments is used as reference solution. The results again verify that
the FS-FEM model is softer and gives more accurate results than
the FEM model using tetrahedral elements.

4.3. The hollow sphere problem: visco-elastoplasticity with isotropic
hardening

The domain is the hollow sphere X ¼ Bð0;2Þ n Bð0;1:3Þ (the ori-
gin Oð0;0;0Þ, inner radius a ¼ 1:3, outer radius b ¼ 2:0Þ subjected
to a uniform pressure gðr;u; tÞ ¼ 50ter on inner radius with
er ¼ ðcos u; sin uÞ. Because of the symmetric characteristic of the
problem, only a eighth of hollow sphere is modeled as shown in
Fig. 20, and symmetric conditions are imposed on the cutting
boundary planes. Assuming that the material is visco-elastoplastic-
ity with isotropic hardening with Young’s modulus E ¼ 40;000,
Poisson’s ratio v ¼ 0:25, yield stress rY ¼ 100, hardening
parameter H ¼ 3;H1 ¼ 1; and the initial stress vector r0 and
the scalar hardening parameter aI

0 are set zero.
The solution is calculated in the time interval from t ¼ 0 to

t ¼ 1:0 in 10 uniform steps Dt ¼ 0:1. Using the mesh as shown
in Fig. 20, the material remains elastic in seven first steps, be-
tween t ¼ 0 and t ¼ 0:7 for both the FS-FEM and FEM as shown
in Table 3. Table 3 also shows that the number of iterations in
Newton’s method of both FS-FEM and FEM are almost the same,
but the estimated errors gh in Eq. (56) of FS-FEM are about 30%
less than those of FEM. In addition, Fig. 21 compares the compu-
tational cost and efficiency between the FEM and FS-FEM for a
range of meshes at t ¼ 1. It is seen that with the same mesh,
the computational cost of FS-FEM is larger than that of FEM as
shown in Fig. 21a. However, when the efficiency of computation
(computation time for the same accuracy) in terms of the error
estimator versus computational cost for a range of meshes is con-
sidered, the FS-FEM is more efficient than the FEM as shown in
Fig. 21b.

Fig. 22 shows the elastic shear energy density kdevðRrhÞk2
=ð4lÞ

at t ¼ 1:0 which is also almost the same for the FEM and FS-FEM.
The evolution of the elastic shear energy density
kdevðRrhÞk2

=ð4lÞ is demonstrated using the FS-FEM at some dif-
ferent time instances as shown in Fig. 23 in which the plastic do-
main first appears at the inner radius and extents toward the
outer radius. Table 4 shows the ratio of radial displacements be-
tween points A(1.3,0,0) and B(0,1.3,0) using the FEM and FS-FEM
at various time steps. It is seen that for the symmetric problem,
the results of FS-FEM is more symmetric than those of FEM.

Fig. 24 shows the convergence of the elastic strain energy
E ¼

R
X r# : e# dX versus the number of degrees of freedom using

the FEM and FS-FEM at t ¼ 1:0. The solution of FS-FEM using a very
fine mesh including 17,988 degrees of freedom and 30,168 ele-
ments is used as reference solution. The results again verify that
the FS-FEM model is softer and gives more accurate results than
the FEM model using tetrahedral elements.
4.4. A 3D Cook’s membrane: visco-elastoplasticity with linear
kinematic hardening

Fig. 25 show a 3D Cook’s membrane on yOz plane, and a discret-
ization of the domain using 2317 nodes and 9583 tetrahedral ele-
ments. At the high end of the membrane, there is a time dependent
shear force g ¼ 90tez and the other end is fixed. Assuming that the
material is visco-elastoplasticity with linear kinematic hardening
with Young’s modulus E ¼ 70;000, Poisson’s ratio v ¼ 0:3, yield
stress rY ¼ 400, hardening parameter k1 ¼ 2, and the initial data
for the displacement u0, the stress tensor r0 and the hardening
parameter aK

0 are set zero.
The solution is calculated in the time interval from t ¼ 0 to

t ¼ 1:0 in 10 uniform steps Dt ¼ 0:1. Using the mesh as shown
in Fig. 25, the material remains elastic in five first steps, between
t ¼ 0 and t ¼ 0:5 for both the FS-FEM and FEM as shown in Table
5. Table 5 also shows that the number of iterations in Newton’s
method of both the FS-FEM and FEM are almost the same, but
the estimated errors gh in Eq. (56) of FS-FEM are about 30% less
than those of FEM. In addition, Fig. 26 compares the computa-
tional cost and efficiency between the FEM and FS-FEM for a
range of meshes at t ¼ 1. It is seen that with the same mesh,
the computational cost of FS-FEM is larger than that of FEM as
shown in Fig. 26a. However, when the efficiency of computation
(computation time for the same accuracy) in terms of the error
estimator versus computational cost for a range of meshes is con-
sidered, the FS-FEM is more efficient than the FEM as shown in
Fig. 26b.

Fig. 27 shows the elastic shear energy density kdevðRrhÞk2
=ð4lÞ

at t ¼ 1:0 which is almost the same for the FEM and FS-FEM. The
evolution of the elastic shear energy density kdevðRrhÞk2

=ð4lÞ is
demonstrated using the FS-FEM at four different time instances
as shown in Fig. 28 in which the plastic domain first appears at
the fixed upper corner and then at the middle part of the lower
boundary face.

Fig. 29 shows the convergence of the elastic strain energy
E ¼

R
X r# : e#dX versus the number of degrees of freedom using

the FEM and FS-FEM at t ¼ 1:0. The solution of FS-FEM using a very
fine mesh including 17,307 degrees of freedom and 26,084 ele-
ments is used as reference solution. The results again verify that
the FS-FEM model is softer and gives more accurate results than
the FEM model using tetrahedral elements.
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5. Conclusion

In this paper, the FS-FEM is extended to more complicated vis-
co-elastoplastic analyses in 3D solids. We combine the FS-FEM
using tetrahedral elements with the work of Carstensen and Klose
[50] in the setting of von-Mises conditions and the Prandtl–Reuss
flow rule, and the material behavior includes perfect visco-
elastoplasticity, and visco-elastoplasticity with isotropic hardening
and linear kinematic hardening in a dual model, with displace-
ments and the stresses as the main variables. The numerical proce-
dure, however, eliminates the stress variables and the problem
becomes only displacement-dependent and is easier to deal with.
The numerical results of FS-FEM using tetrahedral elements show
that

� The bandwidth of stiffness matrix of FS-FEM is larger than that
of FEM, and hence the computational cost of FS-FEM is larger
than that of FEM. However, when the efficiency of computation
(computation time for the same accuracy) in terms of a posteri-
ori error estimation is considered, the FS-FEM is more efficient
than FEM.

� The displacement results of FS-FEM are larger than those of FEM.
The elastic strain energy of FS-FEM is more accurate than that of
FEM. These results show clearly that the FS-FEM model can
reduce the over-stiffness of the standard FEM model using tetra-
hedral elements and gives more accurate results than those of
FEM.

� For the axis-symmetric problems, the results of FS-FEM are
more symmetric than those of FEM.
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